תקציר
Process modeling tools typically aid end users in generic, non-personalized ways. However, it is well conceivable that different types of end users may profit from different types of modeling support. In this paper, we propose an approach based on machine learning that is able to classify modelers regarding their expertise while they are creating a process model. To do so, it takes into account pragmatic features of the model under development. The proposed approach is fully automatic, unobtrusive, tool independent, and based on objective measures. An evaluation based on two data sets resulted in a prediction performance of around 90%. Our results further show that all features can be efficiently calculated, which makes the approach applicable to online settings like adaptive modeling environments. In this way, this work contributes to improving the performance of process modelers.
שפה מקורית | אנגלית אמריקאית |
---|---|
כותר פרסום המארח | Business Process Management - 16th International Conference, BPM 2018, Proceedings |
עורכים | Marco Montali, Ingo Weber, Mathias Weske, Jan vom Brocke |
מוציא לאור | Springer Verlag |
עמודים | 322-338 |
מספר עמודים | 17 |
מסת"ב (מודפס) | 9783319986470 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2018 |
אירוע | 16th International Conference on Business Process Management, BPM 2018 - Sydney, אוסטרליה משך הזמן: 9 ספט׳ 2018 → 14 ספט׳ 2018 |
סדרות פרסומים
שם | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
כרך | 11080 LNCS |
ISSN (מודפס) | 0302-9743 |
ISSN (אלקטרוני) | 1611-3349 |
כנס
כנס | 16th International Conference on Business Process Management, BPM 2018 |
---|---|
מדינה/אזור | אוסטרליה |
עיר | Sydney |
תקופה | 9/09/18 → 14/09/18 |
הערה ביבליוגרפית
Publisher Copyright:© Springer Nature Switzerland AG 2018.
ASJC Scopus subject areas
- ???subjectarea.asjc.2600.2614???
- ???subjectarea.asjc.1700???