TY - JOUR
T1 - The genetic basis of adaptive population differentiation
T2 - A quantitative trait locus analysis of fitness traits in two wild barley populations from contrasting habitats
AU - Verhoeven, Koen J.F.
AU - Vanhala, Tytti K.
AU - Biere, Arjen
AU - Nevo, Eviatar
AU - Van Damme, Jos M.M.
PY - 2004/2
Y1 - 2004/2
N2 - We used a quantitative trait locus (QTL) approach to study the genetic basis of population differentiation in wild barley, Hordeum spontaneum. Several ecotypes are recognized in this model species, and population genetic studies and reciprocal transplant experiments have indicated the role of local adaptation in shaping population differences. We derived a mapping population from a cross between a coastal Mediterranean population and a steppe inland population from Israel and assessed F3 progeny fitness in the natural growing environments of the two parental populations. Dilution of the local gene pool, estimated as the proportion of native alleles at 96 marker loci in the recombinant lines, negatively affected fitness traits at both sites. QTLs for fitness traits tended to differ in the magnitude but not in the direction of their effects across sites, with beneficial alleles generally conferring a greater fitness advantage at their native site. Several QTLs showed fitness effects at one site only, but no opposite selection on individual QTLs was observed across the sites. In a common-garden experiment, we explored the hypothesis that the two populations have adapted to divergent nutrient availabilities. In the different nutrient environments of this experiment, but not under field conditions, fitness of the F3 progeny lines increased with the number of heterozygous marker loci. Comparison of QTL-effects that underlie genotype X nutrient interaction in the common-garden experiment and genotype X site interaction in the field suggested that population differentiation at the field sites may have been driven by divergent nutrient availabilities to a limited extent. Also in this experiment no QTLs were observed with opposite fitness effects in contrasting environments. Our data are consistent with the view that adaptive differentiation can be based on selection on multiple traits changing gradually along ecological gradients. This can occur without QTLs showing opposite fitness effects in the different environments, that is, in the absence of genetic trade-offs in performance between environments.
AB - We used a quantitative trait locus (QTL) approach to study the genetic basis of population differentiation in wild barley, Hordeum spontaneum. Several ecotypes are recognized in this model species, and population genetic studies and reciprocal transplant experiments have indicated the role of local adaptation in shaping population differences. We derived a mapping population from a cross between a coastal Mediterranean population and a steppe inland population from Israel and assessed F3 progeny fitness in the natural growing environments of the two parental populations. Dilution of the local gene pool, estimated as the proportion of native alleles at 96 marker loci in the recombinant lines, negatively affected fitness traits at both sites. QTLs for fitness traits tended to differ in the magnitude but not in the direction of their effects across sites, with beneficial alleles generally conferring a greater fitness advantage at their native site. Several QTLs showed fitness effects at one site only, but no opposite selection on individual QTLs was observed across the sites. In a common-garden experiment, we explored the hypothesis that the two populations have adapted to divergent nutrient availabilities. In the different nutrient environments of this experiment, but not under field conditions, fitness of the F3 progeny lines increased with the number of heterozygous marker loci. Comparison of QTL-effects that underlie genotype X nutrient interaction in the common-garden experiment and genotype X site interaction in the field suggested that population differentiation at the field sites may have been driven by divergent nutrient availabilities to a limited extent. Also in this experiment no QTLs were observed with opposite fitness effects in contrasting environments. Our data are consistent with the view that adaptive differentiation can be based on selection on multiple traits changing gradually along ecological gradients. This can occur without QTLs showing opposite fitness effects in the different environments, that is, in the absence of genetic trade-offs in performance between environments.
KW - Antagonistic pleiotropy
KW - Fitness quantitative trait loci
KW - Genetic trade-off
KW - Heterosis
KW - Hordeum spontaneum
KW - Local adaptation
UR - http://www.scopus.com/inward/record.url?scp=1642352774&partnerID=8YFLogxK
U2 - 10.1111/j.0014-3820.2004.tb01644.x
DO - 10.1111/j.0014-3820.2004.tb01644.x
M3 - Article
C2 - 15068345
AN - SCOPUS:1642352774
VL - 58
SP - 270
EP - 283
JO - Evolution; international journal of organic evolution
JF - Evolution; international journal of organic evolution
SN - 0014-3820
IS - 2
ER -