Whitening for photometric comparison of smooth surfaces under varying illumination

Margarita Osadchy, Michael Lindenbaum, David Jacobs

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

We consider the problem of image comparison in order to match smooth surfaces under varying illumination. In a smooth surface nearby surface normals are highly correlated. We model such surfaces as Gaussian processes and derive the resulting statistical characterization of the corresponding images. Supported by this model, we treat the difference between two images, associated with the same surface and different lighting, as colored Gaussian noise, and use the whitening tool from signal detection theory to construct a measure of difference between such images. This also improves comparisons by accentuating the differences between images of different surfaces. At the same time, we prove that no linear filter, including ours, can produce lighting insensitive image comparisons. While our Gaussian assumption is a simplification, the resulting measure functions well for both synthetic and real smooth objects. Thus we improve upon methods for matching images of smooth objects, while providing insight into the performance of such methods. Much prior work has focused on image comparison methods appropriate for highly curved surfaces. We combine our method with one of these, and demonstrate high performance on rough and smooth objects.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsTomas Pajdla, Jiri Matas
PublisherSpringer Verlag
Pages217-228
Number of pages12
ISBN (Print)3540219811
DOIs
StatePublished - 2004
Externally publishedYes

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume3024
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Whitening for photometric comparison of smooth surfaces under varying illumination'. Together they form a unique fingerprint.

Cite this