Abstract
Underwater image reconstruction methods require the knowledge of wideband attenuation coefficients per color channel. Current estimation methods for these coefficients require specialized hardware or multiple images, and none of them leverage the multitude of existing ocean optical measurements as priors. Here, we aim to constrain the set of physically-feasible wideband attenuation coefficients in the ocean by utilizing water attenuation measured worldwide by oceanographers. We calculate the space of valid wideband effective attenuation coefficients in the 3D RGB domain and find that a bound manifold in 3-space sufficiently represents the variation from the clearest to murkiest waters. We validate our model using in situ experiments in two different optical water bodies, the Red Sea and the Mediterranean. Moreover, we show that contradictory to the common image formation model, the coefficients depend on the imaging range and object reflectance, and quantify the errors resulting from ignoring these dependencies.
Original language | English |
---|---|
Title of host publication | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 568-577 |
Number of pages | 10 |
ISBN (Electronic) | 9781538604571 |
DOIs | |
State | Published - 6 Nov 2017 |
Event | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States Duration: 21 Jul 2017 → 26 Jul 2017 |
Publication series
Name | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Volume | 2017-January |
Conference
Conference | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 21/07/17 → 26/07/17 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.
ASJC Scopus subject areas
- Signal Processing
- Computer Vision and Pattern Recognition