What Can We Learn from Depth Camera Sensor Noise?

Research output: Contribution to journalArticlepeer-review

Abstract

Although camera and sensor noise are often disregarded, assumed negligible or dealt with in the context of denoising, in this paper we show that significant information can actually be deduced from camera noise about the captured scene and the objects within it. Specifically, we deal with depth cameras and their noise patterns. We show that from sensor noise alone, the object’s depth and location in the scene can be deduced. Sensor noise can indicate the source camera type, and within a camera type the specific device used to acquire the images. Furthermore, we show that noise distribution on surfaces provides information about the light direction within the scene as well as allows to distinguish between real and masked faces. Finally, we show that the size of depth shadows (missing depth data) is a function of the object’s distance from the background, its distance from the camera and the object’s size. Hence, can be used to authenticate objects location in the scene. This paper provides tools and insights into what can be learned from depth camera sensor noise.

Original languageEnglish
Article number5448
JournalSensors
Volume22
Issue number14
DOIs
StatePublished - 21 Jul 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors.

Keywords

  • depth camera
  • depth sensors
  • noise

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'What Can We Learn from Depth Camera Sensor Noise?'. Together they form a unique fingerprint.

Cite this