Weighted sum coloring in batch scheduling of conflicting jobs

Leah Epstein, Magnús M. Halldórsson, Asaf Levin, Hadas Shachnai

Research output: Contribution to journalArticlepeer-review

Abstract

Motivated by applications in batch scheduling of jobs in manufacturing systems and distributed computing, we study two related problems. Given is a set of jobs {J 1,J n }, where J j has a processing time p j, and an undirected intersection graph G=({1,...,n},E), with an edge (i,j) whenever the pair of jobs J i and J j cannot be processed in the same batch. We are to schedule the jobs in batches, where each batch completes its processing when the last job in the batch completes execution. The goal is to minimize the sum of job completion times. Our two problems differ in the definition of completion time of a job within a given batch. In the first variant, a job completes its execution when its batch is completed, whereas in the second variant, a job completes execution when its own processing is completed. For the first variant, we show that an adaptation of the greedy set cover algorithm gives a 4-approximation for perfect graphs. For the second variant, we give new or improved approximations for a number of different classes of graphs. The algorithms are of widely different genres (LP, greedy, subgraph covering), yet they curiously share a common feature in their use of randomized geometric partitioning.

Original languageEnglish
Pages (from-to)643-665
Number of pages23
JournalAlgorithmica
Volume55
Issue number4
DOIs
StatePublished - Dec 2009

Keywords

  • Approximation algorithms
  • Batch scheduling
  • Geometric partitioning

ASJC Scopus subject areas

  • Computer Science (all)
  • Computer Science Applications
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Weighted sum coloring in batch scheduling of conflicting jobs'. Together they form a unique fingerprint.

Cite this