Tree edit distance cannot be computed in strongly subcubic time (unless APSP can)

Karl Bringmann, Pawel Gawrychowski, Shay Mozes, Oren Weimann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The edit distance between two rooted ordered trees with n nodes labeled from an alphabet Σ is the minimum cost of transforming one tree into the other by a sequence of elementary operations consisting of deleting and relabeling existing nodes, as well as inserting new nodes. Tree edit distance is a well known generalization of string edit distance. The fastest known algorithm for tree edit distance runs in cubic O(n3) time and is based on a similar dynamic programming solution as string edit distance. In this paper we show that a truly subcubic O(n3-ϵ) time algorithm for tree edit distance is unlikely: For Σ = (n), a truly subcubic algorithm for tree edit distance implies a truly subcubic algorithm for the all pairs shortest paths problem. For Σ = O(1), a truly subcubic algorithm for tree edit distance implies an O(nk-ϵ) algorithm for finding a maximum weight k-clique. Thus, while in terms of upper bounds string edit distance and tree edit distance are highly related, in terms of lower bounds string edit distance exhibits the hardness of the strong exponential time hypothesis [Backurs, Indyk STOC'15] whereas tree edit distance exhibits the hardness of all pairs shortest paths. Our result provides a matching conditional lower bound for one of the last remaining classic dynamic programming problems.

Original languageEnglish
Title of host publication29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018
EditorsArtur Czumaj
PublisherAssociation for Computing Machinery
Pages1190-1206
Number of pages17
ISBN (Electronic)9781611975031
DOIs
StatePublished - 2018
Event29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 - New Orleans, United States
Duration: 7 Jan 201810 Jan 2018

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Conference

Conference29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018
Country/TerritoryUnited States
CityNew Orleans
Period7/01/1810/01/18

Bibliographical note

Publisher Copyright:
© Copyright 2018 by SIAM.

ASJC Scopus subject areas

  • Software
  • Mathematics (all)

Fingerprint

Dive into the research topics of 'Tree edit distance cannot be computed in strongly subcubic time (unless APSP can)'. Together they form a unique fingerprint.

Cite this