Abstract
Surface grading is an integral part of the construction pipeline. Here, a dozer, which is a key machinery tool in any construction site, is required to level an uneven area containing pre-dumped sand piles. In this work, we aim to tackle the problem of autonomous surface grading on real-world scenarios. We design both a realistic physical simulation and a scaled real-world prototype environment mimicking the real dozer dynamics and sensory information. We establish heuristics and learning strategies in order to solve the problem. Through extensive experimentation, we show that although heuristics are capable of tackling the problem in a clean and noise-free simulated environment, they fail catastrophically when facing real-world scenarios. However, we show that the simulation can be leveraged to guide a learning agent, which can generalize and solve the task both in simulation and in a scaled prototype environment.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2022 Workshops, Proceedings |
Editors | Leonid Karlinsky, Tomer Michaeli, Ko Nishino |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 107-117 |
Number of pages | 11 |
ISBN (Print) | 9783031250682 |
DOIs | |
State | Published - 2023 |
Event | 17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel Duration: 23 Oct 2022 → 27 Oct 2022 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 13804 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 17th European Conference on Computer Vision, ECCV 2022 |
---|---|
Country/Territory | Israel |
City | Tel Aviv |
Period | 23/10/22 → 27/10/22 |
Bibliographical note
Publisher Copyright:© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science