TY - JOUR
T1 - Toward truly optimal IMRT dose distribution
T2 - Inverse planning with voxel-specific penalty
AU - Lougovski, Pavel
AU - LeNoach, Jordan
AU - Zhu, Lei
AU - Ma, Yunzhi
AU - Censor, Yair
AU - Xing, Lei
PY - 2010/12
Y1 - 2010/12
N2 - Purpose: To establish an inverse planning framework with adjustable voxel penalty for more conformal IMRT dose distribution as well as improved interactive controllability over the regional dose distribution of the resultant plan. Materials and Method: In the proposed coarse-to-fine planning scheme, a conventional inverse planning with organ specific parameters is first performed. The voxel penalty scheme is then "switched on" by allowing the prescription dose to change on an individual voxel scale according to the deviation of the actual voxel dose from the ideally desired dose. The rationale here is intuitive: when the dose at a voxel does not meet its ideal dose, it simply implies that this voxel is not competitive enough when compared with the ones that have met their planning goal. In this case, increasing the penalty of the voxel by varying the prescription can boost its competitiveness and thus improve its dose. After the prescription adjustment, the plan is re-optimized. The dose adjustment/ re-optimization procedure is repeated until the resultant dose distribution cannot be improved anymore. The prescription adjustment on a finer scale can be accomplished either automatically or manually. In the latter case, the regions/voxels where a dose improvement is needed are selected visually, unlike in the automatic case where the selection is done purely based on the difference of the actual dose at a given voxel and its ideal prescription. The performance of the proposed method is evaluated using a head and neck and a prostate case. Results: An inverse planning framework with the voxel-specific penalty is established. By adjusting voxel prescriptions iteratively to boost the region where large mismatch between the actual calculated and desired doses occurs, substantial improvements can be achieved in the final dose distribution. The proposed method is applied to a head and neck case and a prostate case. For the former case, a significant reduction in the maximum dose to the brainstem is achieved while the PTV dose coverage is greatly improved. The doses to other organs at risk are also reduced, ranging from 10% to 30%. For the prostate case, the use of the voxel penalty scheme also results in vast improvements to the final dose distribution. The PTV experiences improved dose uniformity and the mean dose to the rectum and bladder is reduced by as much as 15%. Conclusion: Introduction of the spatially non-uniform and adjustable prescription provides room for further improvements of currently achievable dose distributions and equips the planner with an effective tool to modify IMRT dose distributions interactively. The technique is easily implementable in any existing inverse planning platform, which should facilitate clinical IMRT planning process and, in future, off-line/on-line adaptive IMRT.
AB - Purpose: To establish an inverse planning framework with adjustable voxel penalty for more conformal IMRT dose distribution as well as improved interactive controllability over the regional dose distribution of the resultant plan. Materials and Method: In the proposed coarse-to-fine planning scheme, a conventional inverse planning with organ specific parameters is first performed. The voxel penalty scheme is then "switched on" by allowing the prescription dose to change on an individual voxel scale according to the deviation of the actual voxel dose from the ideally desired dose. The rationale here is intuitive: when the dose at a voxel does not meet its ideal dose, it simply implies that this voxel is not competitive enough when compared with the ones that have met their planning goal. In this case, increasing the penalty of the voxel by varying the prescription can boost its competitiveness and thus improve its dose. After the prescription adjustment, the plan is re-optimized. The dose adjustment/ re-optimization procedure is repeated until the resultant dose distribution cannot be improved anymore. The prescription adjustment on a finer scale can be accomplished either automatically or manually. In the latter case, the regions/voxels where a dose improvement is needed are selected visually, unlike in the automatic case where the selection is done purely based on the difference of the actual dose at a given voxel and its ideal prescription. The performance of the proposed method is evaluated using a head and neck and a prostate case. Results: An inverse planning framework with the voxel-specific penalty is established. By adjusting voxel prescriptions iteratively to boost the region where large mismatch between the actual calculated and desired doses occurs, substantial improvements can be achieved in the final dose distribution. The proposed method is applied to a head and neck case and a prostate case. For the former case, a significant reduction in the maximum dose to the brainstem is achieved while the PTV dose coverage is greatly improved. The doses to other organs at risk are also reduced, ranging from 10% to 30%. For the prostate case, the use of the voxel penalty scheme also results in vast improvements to the final dose distribution. The PTV experiences improved dose uniformity and the mean dose to the rectum and bladder is reduced by as much as 15%. Conclusion: Introduction of the spatially non-uniform and adjustable prescription provides room for further improvements of currently achievable dose distributions and equips the planner with an effective tool to modify IMRT dose distributions interactively. The technique is easily implementable in any existing inverse planning platform, which should facilitate clinical IMRT planning process and, in future, off-line/on-line adaptive IMRT.
KW - Adaptive radiation therapy
KW - Dose optimization
KW - IMRT
KW - Inverse planning
UR - http://www.scopus.com/inward/record.url?scp=78650357769&partnerID=8YFLogxK
U2 - 10.1177/153303461000900611
DO - 10.1177/153303461000900611
M3 - Article
C2 - 21070085
AN - SCOPUS:78650357769
SN - 1533-0346
VL - 9
SP - 629
EP - 636
JO - Technology in Cancer Research and Treatment
JF - Technology in Cancer Research and Treatment
IS - 6
ER -