Time series canopy phenotyping enables the identification of genetic variants controlling dynamic phenotypes in soybean

Delin Li, Dong Bai, Yu Tian, Ying Hui Li, Chaosen Zhao, Qi Wang, Shiyu Guo, Yongzhe Gu, Xiaoyan Luan, Ruizhen Wang, Jinliang Yang, Malcolm J. Hawkesford, James C. Schnable, Xiuliang Jin, Li Juan Qiu

Research output: Contribution to journalArticlepeer-review

Abstract

Advances in plant phenotyping technologies are dramatically reducing the marginal costs of collecting multiple phenotypic measurements across several time points. Yet, most current approaches and best statistical practices implemented to link genetic and phenotypic variation in plants have been developed in an era of single-time-point data. Here, we used time-series phenotypic data collected with an unmanned aircraft system for a large panel of soybean (Glycine max (L.) Merr.) varieties to identify previously uncharacterized loci. Specifically, we focused on the dissection of canopy coverage (CC) variation from this rich data set. We also inferred the speed of canopy closure, an additional dimension of CC, from the time-series data, as it may represent an important trait for weed control. Genome-wide association studies (GWASs) identified 35 loci exhibiting dynamic associations with CC across developmental stages. The time-series data enabled the identification of 10 known flowering time and plant height quantitative trait loci (QTLs) detected in previous studies of adult plants and the identification of novel QTLs influencing CC. These novel QTLs were disproportionately likely to act earlier in development, which may explain why they were missed in previous single-time-point studies. Moreover, this time-series data set contributed to the high accuracy of the GWASs, which we evaluated by permutation tests, as evidenced by the repeated identification of loci across multiple time points. Two novel loci showed evidence of adaptive selection during domestication, with different genotypes/haplotypes favored in different geographic regions. In summary, the time-series data, with soybean CC as an example, improved the accuracy and statistical power to dissect the genetic basis of traits and offered a promising opportunity for crop breeding with quantitative growth curves.

Original languageEnglish
Pages (from-to)117-132
Number of pages16
JournalJournal of Integrative Plant Biology
Volume65
Issue number1
DOIs
StatePublished - Jan 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

Keywords

  • GWAS
  • canopy coverage
  • dynamic regulation
  • soybean
  • time series
  • unmanned aircraft system

ASJC Scopus subject areas

  • Biochemistry
  • General Biochemistry, Genetics and Molecular Biology
  • Plant Science

Fingerprint

Dive into the research topics of 'Time series canopy phenotyping enables the identification of genetic variants controlling dynamic phenotypes in soybean'. Together they form a unique fingerprint.

Cite this