Threshold Functions for H-factors

Noga Alon, Raphael Yuster

Research output: Contribution to journalArticlepeer-review

Abstract

Let H be a graph on h vertices, and G be a graph on n vertices. An H-factor of G is a spanning subgraph of G consisting of n/h vertex disjoint copies of H. The fractional arboricity of H is [formula omitted], where the maximum is taken over all subgraphs (V′, E′) of H with |V′| > 1. Let δ(H) denote the minimum degree of a vertex of H. It is shown that if δ(H) < a(H), then n−1/a(H) is a sharp threshold function for the property that the random graph G(n, p) contains an H-factor. That is, there are two positive constants c and C so that for p(n) = cn−1/a(H) almost surely G(n, p(n)) does not have an H-factor, whereas for p(n) = Cn−1/a(H), almost surely G(n, p(n)) contains an H-factor (provided h divides n). A special case of this answers a problem of Erdős.

Original languageEnglish
Pages (from-to)137-144
Number of pages8
JournalCombinatorics Probability and Computing
Volume2
Issue number2
DOIs
StatePublished - Jun 1993
Externally publishedYes

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Statistics and Probability
  • Computational Theory and Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Threshold Functions for H-factors'. Together they form a unique fingerprint.

Cite this