TY - JOUR
T1 - Three-dimensional (3-D) seismic imaging of conduits and radial faults associated with hydrothermal vent complexes (Vøring Basin, Offshore Norway)
AU - Omosanya, Kamaldeen O.
AU - Eruteya, Ovie E.
AU - Siregar, Einstein S.A.
AU - Zieba, Krzysztof J.
AU - Johansen, Ståle E.
AU - Alves, Tiago M.
AU - Waldmann, Nicolas D.
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/5/1
Y1 - 2018/5/1
N2 - Here, we document a suite of radial faults associated with hydrothermal vent complexes in the Vøring Basin, offshore Norway. These complexes have pyramid-shaped, cylindrical- and conical-shaped conduits, with a dome-, or eye-shaped morphology at their summit, intruding on Paleogene sedimentary rocks. Hydrothermal vents are intimate with the tips of magmatic sills that were emplaced at depths ranging between 1800 and 5800 ms Two Way Travel Time (TWTT). At shallower depths of 1800 to 3000 ms TWTT and intermediate depths of 3000 to 5000 ms TWWT, magmatic sills regularly intersect the lower parts of the vent conduits, which are characterized here as pipes. An important parameter that is used to characterize the morphology of a hydrothermal vent conduit is the width of the conduit, which is defined as the longest axis marking the extent of the vents' conduit within the surrounding host-rock strata. Our findings reveal that radial faults are commonly associated with the summits of hydrothermal vents, implying the existence of local stress fields around the vents, where the maximum compressive stress is radial and minimum stress is circumferential, which overrides the regional stress field and indicate variable stress regimes as opposed to tectonic faults. Importantly, circumferential stretching due to catastrophic plumbing of hydrothermal fluids, differential compaction and intensive fracturing enabled the polygonal faults to realign in a radial pattern resulting in the formation of radial faults at the vent summit. As a corollary of this work, we hypothesize that pyramid-shaped hydrothermal conduits are possibly markers of protracted sill emplacement in sedimentary basins.
AB - Here, we document a suite of radial faults associated with hydrothermal vent complexes in the Vøring Basin, offshore Norway. These complexes have pyramid-shaped, cylindrical- and conical-shaped conduits, with a dome-, or eye-shaped morphology at their summit, intruding on Paleogene sedimentary rocks. Hydrothermal vents are intimate with the tips of magmatic sills that were emplaced at depths ranging between 1800 and 5800 ms Two Way Travel Time (TWTT). At shallower depths of 1800 to 3000 ms TWTT and intermediate depths of 3000 to 5000 ms TWWT, magmatic sills regularly intersect the lower parts of the vent conduits, which are characterized here as pipes. An important parameter that is used to characterize the morphology of a hydrothermal vent conduit is the width of the conduit, which is defined as the longest axis marking the extent of the vents' conduit within the surrounding host-rock strata. Our findings reveal that radial faults are commonly associated with the summits of hydrothermal vents, implying the existence of local stress fields around the vents, where the maximum compressive stress is radial and minimum stress is circumferential, which overrides the regional stress field and indicate variable stress regimes as opposed to tectonic faults. Importantly, circumferential stretching due to catastrophic plumbing of hydrothermal fluids, differential compaction and intensive fracturing enabled the polygonal faults to realign in a radial pattern resulting in the formation of radial faults at the vent summit. As a corollary of this work, we hypothesize that pyramid-shaped hydrothermal conduits are possibly markers of protracted sill emplacement in sedimentary basins.
KW - 3-D seismic data
KW - Fluid flow
KW - Hydrothermal vents
KW - Magmatic sills
KW - Radial faults
KW - Vøring Basin
UR - http://www.scopus.com/inward/record.url?scp=85042929316&partnerID=8YFLogxK
U2 - 10.1016/j.margeo.2018.02.007
DO - 10.1016/j.margeo.2018.02.007
M3 - Article
AN - SCOPUS:85042929316
SN - 0025-3227
VL - 399
SP - 115
EP - 134
JO - Marine Geology
JF - Marine Geology
ER -