The sisters of the golden section

Research output: Contribution to journalArticlepeer-review


The golden proportion is widely believed to be extraordinarily prevalent in nature and the arts, which is often ascribed to it being the limit of the ratio between any two successive elements in the Fibonacci sequence. It is suggested here that the golden ratio may not be as exceptional as generally believed. Mathematically, some interesting properties are common to all members of a family of sequences, denoted ARS, characterised as solutions to the classic rabbit reproduction problem varying on some parameter, j, including the Fibonacci sequence as a proto- typical member-ARS2. Furthermore, for j > 1, any limit of the ratio between successive elements in ARSj, shares the same formal properties with all other such limits. Three actual interpretations and three further geometric applications of ARS3, all intimately analogous to corresponding ARS2 ones, are presented for the sake of illustration. Empirically, it is suggested here that, owing to the communality of interesting mathematical properties between ARS sequences, as well as between corresponding limits, nature might appear to have made use of some other limits, aside of its variegated use of the limit of ARS2 - the golden ratio. Initial empirical clues are provided. Finally, the issue whether there really is special import to golden proportions in nature and the arts is revisited in view of some empirical comparisons of appearances related to Fibonacci numbers and ARS3 numbers, particular its limit (~1.466) and the inverse of that limit (~0.682). It is argued that the claim that Fibonacci-related numbers are especially distinguished seems to warrant a more qualified approach than it has often met.

Original languageEnglish
Pages (from-to)705-724
Number of pages20
Issue number6
StatePublished - 2011

ASJC Scopus subject areas

  • Experimental and Cognitive Psychology
  • Ophthalmology
  • Sensory Systems
  • Artificial Intelligence


Dive into the research topics of 'The sisters of the golden section'. Together they form a unique fingerprint.

Cite this