Abstract
Given a connected space X, we consider the effect of Quillen's plus construction on the homotopy groups of X in terms of its Postnikov decomposition. Specifically, using universal properties of the fibration sequence AX → X → X+, we explain the contribution of πnX to πn X+, πn+1 X+ and πnAX, πn+1 AX explicitly in terms of the low dimensional homology of πnX regarded as a module over π1X. Key ingredients developed here for this purpose are universal II-central fibrations and a theory of universal central extensions of modules, analogous to universal central extensions of perfect groups.
Original language | English |
---|---|
Pages (from-to) | 109-123 |
Number of pages | 15 |
Journal | Israel Journal of Mathematics |
Volume | 132 |
DOIs | |
State | Published - 2002 |
ASJC Scopus subject areas
- General Mathematics