Abstract
Background: The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results: Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions: This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromeretelomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.
Original language | English |
---|---|
Article number | R138 |
Journal | Genome Biology |
Volume | 14 |
Issue number | 12 |
DOIs | |
State | Published - 2013 |
Bibliographical note
Funding Information:The authors wish to thank the International Wheat Genome Sequencing Consortium for generating the wheat chromosome survey sequences and making them available to us for analysis. This work was supported by the European Community’s Seventh Framework Programme TriticeaeGenome (grant agreement number FP7-212019), the Israel Science Foundation (ISF) grants 205/08 and 800/10, ISF equipment grants 1478/04 and 1719/08 and Binational Agricultural Research and Development Fund (BARD) grant 3873/06. Dina Raats is grateful for the Eshkol Fellowship awarded by the Israeli Ministry of Science. The authors thank Olga Gurevich for her skillful assistance in marker analysis.
Publisher Copyright:
© 2013 Raats et al..
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Genetics
- Cell Biology