The effect of salinization and freshening events in coastal aquifers on nutrient characteristics as deduced from field data

A. Russak, Y. Yechieli, B. Herut, B. Lazar, O. Sivan

Research output: Contribution to journalArticlepeer-review

Abstract

The effect of seawater intrusion and freshening events in coastal aquifers on nutrient (dissolved inorganic nitrogen species, phosphate and silica) dynamics across the fresh-saline groundwater interface (FSI) were quantified using field data. Seasonal vertical profiles revealed a clear transition between nutrient species across the FSI, which is also an oxycline. In view of the results of our experimental simulations, it is clear that the major process controlling the nutrient dynamics at the FSI, besides the mixing that takes place between the two different water bodies, is the seasonal variation between seawater intrusion (salinization) in summer and flushing of the aquifer (freshening) in winter. Aquifer salinization during the summer shifts the FSI and the anaerobic depth-location upwards and leads to the enrichment of NH4+, PO43- and DSi (dissolved silica) in the saline groundwater. NH4+ and PO43- are enriched due to ion exchange, and DSi is enriched either by ion exchange (as PO43-) or as a result of dissolution of biogenic silica. Denitrification occurs at the base of the FSI, as indicated by the slight NO3- depletion and the enrichment in δ15N of NO3-. Aquifer freshening during the winter shifts the FSI downward and the water becomes suboxic with the influence of the oxic fresh groundwater. This leads to nitrification of the NH4+, enrichment of NO2- and depletion of 15N in the residual NO3- in the FSI. These cyclic processes generate a certain depletion of N and enrichment of P in the saline groundwater. Circulation of the saline groundwater below the FSI back to the sea can serve as a partial counterbalance to the high anthropogenic load of N impacting the coastal groundwater system.

Original languageEnglish
Pages (from-to)1293-1301
Number of pages9
JournalJournal of Hydrology
Volume529
DOIs
StatePublished - 1 Oct 2015
Externally publishedYes

Bibliographical note

Funding Information:
We would like to thank H. Hemo, S. Ashkenazi, H. Lutzky and I. Swaed from the Israeli Geological Survey for their help in the field. We also want to thank O. Yoffe and D. Stibler from the Israeli Geological Survey, E. Eliani-Russak from Ben Gurion University, K. Yanuka and Y. Segal from Oceanographic and Limnological Research and T. Rivlin from the Inter-University Institute for Marine Science for their help with sample analyses. This research was supported by the Israel Science Foundation (OS #857/09) and the Water Authority (OS and YY).

Publisher Copyright:
© 2015 Elsevier B.V.

Keywords

  • Coastal aquifer
  • Fresh-saline groundwater interface
  • Nitrogen
  • Nutrients
  • Phosphate
  • Seawater intrusion

ASJC Scopus subject areas

  • Water Science and Technology

Fingerprint

Dive into the research topics of 'The effect of salinization and freshening events in coastal aquifers on nutrient characteristics as deduced from field data'. Together they form a unique fingerprint.

Cite this