Testing a new active learning approach to advance motor learning knowledge and self-efficacy in physical therapy undergraduate education

Daniela V. Vaz, Erica M.R. Ferreira, Giulia B. Palma, Osnat Atun-Einy, Michal Kafri, Fabiane R. Ferreira

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Motor learning (ML) science is foundational for physical therapy. However, multiple sources of evidence have indicated a science-practice gap. Clinicians report low self-efficacy with ML concepts and indicate that the lack of access to systematic training is a barrier for practical implementation. The general goal of this preliminary study was to describe the effects of a new educational intervention on physical therapy student’s ML self-efficacy and knowledge. Methods: Self-efficacy was assessed with the Physical Therapists’ Perceptions of Motor Learning questionnaire. Data was acquired from third-semester students before their participation in the ML educational intervention. Reference self-efficacy data was also acquired from physical therapy professionals and first and last-semester students. The educational intervention for third-semester students was designed around an established framework to apply ML principles to rehabilitation. A direct experience, the “Learning by Doing” approach, in which students had to choose a motor skill to acquire over 10 weeks, provided the opportunity to apply ML theory to practice in a personally meaningful way. After the intervention self-efficacy was re-tested. ML knowledge was tested with an objective final exam. Content analysis of coursework material was used to determine how students comprehended ML theory and related it to their practical experience. The Kruskal-Wallis and Mann-Whitney U tests were used to compare self-efficacy scores between the four groups. Changes in self-efficacy after the educational intervention were analyzed with the Wilcoxon test. Spearman rank correlation analysis was used to test the association between self-efficacy and final exam grades. Results: By the end of the intervention, students’ self-efficacy had significantly increased (p < 0.03), was higher than that of senior students (p < 0.00) and experienced professionals (p < 0.00) and correlated with performance on an objective knowledge test (p < 0.03). Content analysis revealed that students learned to apply the elements of ML-based interventions present in the scientific literature to a real-life, structured ML program tailored to personal objectives. Conclusions: Positive improvements were observed after the intervention. These results need confirmation with a controlled study. Because self-efficacy mediates the clinical application of knowledge and skills, systematic, active training in ML may help reduce the science-practice gap.

Original languageEnglish
Article number62
JournalBMC Medical Education
Volume21
Issue number1
DOIs
StatePublished - Dec 2021

Bibliographical note

Funding Information:
We thank Professor Wendy Rogers, currently at the University of Illinois Urbana-Champaign, for sharing a sample syllabus describing the details of the Learning by Doing methodology. It is Taylor & Francis policy to grant permissions for Fellow members of Scientific, Technical, Medical (STM) publishers? agreement (of which Springer Nature is a member) of up to three figures or tables.

Funding Information:
This study was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)–001 with funding for data collection materials and a scholarship awarded (CNPq 164596/2018–6) to the second author. The funding bodies had no role in the design of the study, collection, analysis and interpretation of data, or in writing the manuscript.

Publisher Copyright:
© 2021, The Author(s).

Keywords

  • Active learning
  • Education
  • Motor learning
  • Physical therapy

ASJC Scopus subject areas

  • Education

Fingerprint

Dive into the research topics of 'Testing a new active learning approach to advance motor learning knowledge and self-efficacy in physical therapy undergraduate education'. Together they form a unique fingerprint.

Cite this