Telomere length and telomerase activity; a yin and yang of cell senescence

Mary Derasmo Axelrad, Temuri Budagov, Gil Atzmon

Research output: Contribution to journalArticlepeer-review

Abstract

Telomeres are repeating DNA sequences at the tip ends of the chromosomes that are diverse in length and in humans can reach a length of 15,000 base pairs. The telomere serves as a bioprotective mechanism of chromosome attrition at each cell division. At a certain length, telomeres become too short to allow replication, a process that may lead to chromosome instability or cell death. Telomere length is regulated by two opposing mechanisms: attrition and elongation. Attrition occurs as each cell divides. In contrast, elongation is partially modulated by the enzyme telomerase, which adds repeating sequences to the ends of the chromosomes. In this way, telomerase could possibly reverse an aging mechanism and rejuvenates cell viability. These are crucial elements in maintaining cell life and are used to assess cellular aging. In this manuscript we will describe an accurate, short, sophisticated and cheap method to assess telomere length in multiple tissues and species. This method takes advantage of two key elements, the tandem repeat of the telomere sequence and the sensitivity of the qRT-PCR to detect differential copy numbers of tested samples. In addition, we will describe a simple assay to assess telomerase activity as a complementary backbone test for telomere length.

Original languageEnglish
JournalJournal of Visualized Experiments
Issue number75
DOIs
StatePublished - 2013
Externally publishedYes

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Neuroscience

Fingerprint

Dive into the research topics of 'Telomere length and telomerase activity; a yin and yang of cell senescence'. Together they form a unique fingerprint.

Cite this