TY - JOUR
T1 - Taste and physiological responses to glucosinolates
T2 - Seed predator versus seed disperser
AU - Samuni-Blank, Michal
AU - Izhaki, Ido
AU - Gerchman, Yoram
AU - Dearing, M. Denise
AU - Karasov, William H.
AU - Trabelcy, Beny
AU - Edwards, Thea M.
AU - Arad, Zeev
N1 - Publisher Copyright:
©2014 Samuni-Blank et al.
PY - 2014/11/10
Y1 - 2014/11/10
N2 - In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs) are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80%) Ochradenus' fruits diets. Acomys russatus, a predator of Ochradenus' seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits' toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus) was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs.
AB - In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs) are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80%) Ochradenus' fruits diets. Acomys russatus, a predator of Ochradenus' seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits' toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus) was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs.
UR - http://www.scopus.com/inward/record.url?scp=84911459133&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0112505
DO - 10.1371/journal.pone.0112505
M3 - Article
C2 - 25383693
AN - SCOPUS:84911459133
SN - 1932-6203
VL - 9
JO - PLoS ONE
JF - PLoS ONE
IS - 11
M1 - e112505
ER -