Superior temporal sulcus folding, functional network connectivity, and autistic-like traits in a non-clinical population

Igor Nenadić, Yvonne Schröder, Jonas Hoffmann, Ulrika Evermann, Julia Katharina Pfarr, Aliénor Bergmann, Daniela Michelle Hohmann, Boris Keil, Ahmad Abu-Akel, Sanna Stroth, Inge Kamp-Becker, Andreas Jansen, Sarah Grezellschak, Tina Meller

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Autistic-like traits (ALT) are prevalent across the general population and might be linked to some facets of a broader autism spectrum disorder (ASD) phenotype. Recent studies suggest an association of these traits with both genetic and brain structural markers in non-autistic individuals, showing similar spatial location of findings observed in ASD and thus suggesting a potential neurobiological continuum. Methods: In this study, we first tested an association of ALTs (assessed with the AQ questionnaire) with cortical complexity, a cortical surface marker of early neurodevelopment, and then the association with disrupted functional connectivity. We analysed structural T1-weighted and resting-state functional MRI scans in 250 psychiatrically healthy individuals without a history of early developmental disorders, in a first step using the CAT12 toolbox for cortical complexity analysis and in a second step we used regional cortical complexity findings to apply the CONN toolbox for seed-based functional connectivity analysis. Results: Our findings show a significant negative correlation of both AQ total and AQ attention switching subscores with left superior temporal sulcus (STS) cortical folding complexity, with the former being significantly correlated with STS to left lateral occipital cortex connectivity, while the latter showed significant positive correlation of STS to left inferior/middle frontal gyrus connectivity (n = 233; all p < 0.05, FWE cluster-level corrected). Additional analyses also revealed a significant correlation of AQ attention to detail subscores with STS to left lateral occipital cortex connectivity. Limitations: Phenotyping might affect association results (e.g. choice of inventories); in addition, our study was limited to subclinical expressions of autistic-like traits. Conclusions: Our findings provide further evidence for biological correlates of ALT even in the absence of clinical ASD, while establishing a link between structural variation of early developmental origin and functional connectivity.

Original languageEnglish
Article number44
JournalMolecular Autism
Volume15
Issue number1
DOIs
StatePublished - 8 Oct 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Keywords

  • Autism quotient (AQ)
  • Autism spectrum disorder (ASD)
  • Cortical surface complexity
  • Interpersonal
  • Subclinical

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Neuroscience
  • Developmental Biology
  • Psychiatry and Mental health

Fingerprint

Dive into the research topics of 'Superior temporal sulcus folding, functional network connectivity, and autistic-like traits in a non-clinical population'. Together they form a unique fingerprint.

Cite this