SUPER-IVIM-DC: Intra-voxel Incoherent Motion Based Fetal Lung Maturity Assessment from Limited DWI Data Using Supervised Learning Coupled with Data-Consistency

Noam Korngut, Elad Rotman, Onur Afacan, Sila Kurugol, Yael Zaffrani-Reznikov, Shira Nemirovsky-Rotman, Simon Warfield, Moti Freiman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Intra-voxel incoherent motion (IVIM) analysis of fetal lungs Diffusion-Weighted MRI (DWI) data shows potential in providing quantitative imaging bio-markers that reflect, indirectly, diffusion and pseudo-diffusion for non-invasive fetal lung maturation assessment. However, long acquisition times, due to the large number of different “b-value” images required for IVIM analysis, precluded clinical feasibility. We introduce SUPER-IVIM-DC a deep-neural-networks (DNN) approach which couples supervised loss with a data-consistency term to enable IVIM analysis of DWI data acquired with a limited number of b-values. We demonstrated the added-value of SUPER-IVIM-DC over both classical and recent DNN approaches for IVIM analysis through numerical simulations, healthy volunteer study, and IVIM analysis of fetal lung maturation from fetal DWI data. Our numerical simulations and healthy volunteer study show that SUPER-IVIM-DC estimates of the IVIM model parameters from limited DWI data had lower normalized root mean-squared error compared to previous DNN-based approaches. Further, SUPER-IVIM-DC estimates of the pseudo-diffusion fraction parameter from limited DWI data of fetal lungs correlate better with gestational age compared to both to classical and DNN-based approaches (0.555 vs. 0.463 and 0.310). SUPER-IVIM-DC has the potential to reduce the long acquisition times associated with IVIM analysis of DWI data and to provide clinically feasible bio-markers for non-invasive fetal lung maturity assessment.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
EditorsLinwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li
PublisherSpringer Science and Business Media Deutschland GmbH
Pages743-752
Number of pages10
ISBN (Print)9783031164330
DOIs
StatePublished - 2022
Externally publishedYes
Event25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 18 Sep 202222 Sep 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13432 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period18/09/2222/09/22

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Keywords

  • Deep-neural-networks
  • Fetal DWI
  • Intra-voxel incoherent motion

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'SUPER-IVIM-DC: Intra-voxel Incoherent Motion Based Fetal Lung Maturity Assessment from Limited DWI Data Using Supervised Learning Coupled with Data-Consistency'. Together they form a unique fingerprint.

Cite this