Sulfate reduction rates in the sediments of the Mediterranean continental shelf inferred from combined dissolved inorganic carbon and total alkalinity profiles

Eyal Wurgaft, Alyssa J. Findlay, Hanni Vigderovich, Barak Herut, Orit Sivan

Research output: Contribution to journalArticlepeer-review

Abstract

Microbial sulfate reduction in marine sediments is coupled either to anaerobic oxidation of methane (S-AOM) or organic material (organoclastic sulfate reduction, OSR). These two pathways of sulfate reduction are important components of the geochemical cycles of both sulfur and carbon in marine systems because they change the redox state of both elements and increase the dissolved inorganic carbon (DIC) and total alkalinity (TA) concentrations in sediment pore water. Here, we determine reaction rates of OSR and S-AOM in the sulfate methane transition zone (SMTZ) of the sediment based upon the different effect of each process on DIC and TA. Although TA has been used as a diagnostic proxy for the identification and determination of the governing chemical processes in numerous previous studies, we show that it can also be applied to disentangle and quantify net sulfate reduction rates in the SMTZ, provided that OSR and S-AOM are the principal processes that affect DIC and TA, and that the effects of other processes, such as carbonate mineral precipitation, are quantified by additional data. By integrating the obtained rates, we determine the contribution of each pathway to the total sulfate reduction. Calculated results from pore water profiles from the Southeastern Mediterranean continental shelf indicate that within the SMTZ, located at a depth of approximately 1 m, each pathway accounted for about half of the total sulfate reduction. The calculated OSR and S-AOM rates were similar to estimations of sulfate reduction rates based upon pore water sulfate profiles from studies in other sedimentary systems, in spite of the differences between these environments and the Southeastern Mediterranean continental shelf, showing that TA and DIC are a robust method for calculating net sulfate reduction. Furthermore, we show here that TA considerations can be used to quantitatively constrain the fractions of reduced sulfate that eventually precipitates as pyrite and FeS, versus the fraction that is oxidized and precipitates as elemental sulfur.

Original languageEnglish
Pages (from-to)64-74
Number of pages11
JournalMarine Chemistry
Volume211
DOIs
StatePublished - 20 Apr 2019

Bibliographical note

Funding Information:
The authors thank the captain and crew of the R/V Bat Galim nd R/V Shikmona from the Israel Oceanographic and Limnological Research for their assistance during field sampling. We are thankful to E. Eliani-Russak for technical help in the lab, and to Shimon Feinstein, L. Freitas and E. Danon for their help in measuring TOC. We thank Boaz Lazar for his help through many fruitful discussions. This research was supported by Grants 212-17-024 and 214-17-011 from the Israel Ministry of National Infrastructure, Energy and Water (to O. Sivan and B. Herut) and by the Israel Science Foundation ( #643/12 ). E. Wurgaft's activities were also supported by a scholarship from The Kreitman School of Advanced Graduate Studies . A. J. Findlay acknowledges support from a Fulbright postdoctoral fellowship and a Marie Curie Europmean Fellowship (SedSulphOx, MSCA 746872 ).

Publisher Copyright:
© 2019 Elsevier B.V.

ASJC Scopus subject areas

  • Oceanography
  • Chemistry (all)
  • Environmental Chemistry
  • Water Science and Technology

Fingerprint

Dive into the research topics of 'Sulfate reduction rates in the sediments of the Mediterranean continental shelf inferred from combined dissolved inorganic carbon and total alkalinity profiles'. Together they form a unique fingerprint.

Cite this