Abstract
Catalysis of arachidonic acid (AA) by cyclooxygenase-2 (COX-2) gives rise to a single product that serves as a precursor for all prostaglandins, which are central mediators of inflammation. Rapid up-regulation of COX-2 expression in response to pro-inflammatory stimuli is a well-characterized means of generating the large pool of prostaglandins necessary for inflammation. However, an efficient inflammatory process must also terminate rapidly and thus requires cessation of COX-2 enzymatic activity and removal of excess protein from the cell. Previous studies showed that COX-2 that has not been exposed to AA ('naive') degrades in the cellular proteasome. However, continuous exposure to AA induces suicide inactivation of COX-2 and its elimination no longer occurs in neither the proteasomal nor lysosomal machineries. In the present study, we show that either overexpressed or endogenously induced COX-2 is secreted via exosomes through the endoplasmic reticulum-Golgi pathway. We further find that excretion of COX-2 is significantly enhanced by prolonged exposure to AA. Genetic or chemical inhibition of COX- 2 enzymatic activity has no effect on its secretion in the absence of substrate, but prevents the additional activity-dependent secretion. Finally, transfer of COX-2 to target cells only occurs in the absence of AA stimulation. Together, these results suggest that exosomal secretion of AA-activated COX-2 constitutes a means to remove damaged inactive COX-2 from the cell.
Original language | English |
---|---|
Pages (from-to) | 3141-3151 |
Number of pages | 11 |
Journal | Biochemical Journal |
Volume | 475 |
Issue number | 19 |
DOIs | |
State | Published - 12 Oct 2018 |
Bibliographical note
Publisher Copyright:© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology