Abstract
In this paper, we provide the first deterministic algorithm that achieves 1/2-approximation for monotone submodular maximization subject to a knapsack constraint, while making a number of queries that scales only linearly with the size of the ground set n. Moreover, our result automatically paves the way for developing a linear-time deterministic algorithm that achieves the tight 1 − 1/e approximation guarantee for monotone submodular maximization under a cardinality (size) constraint. To complement our positive results, we also show strong information-theoretic lower bounds. More specifically, we show that when the maximum cardinality allowed for a solution is constant, no deterministic or randomized algorithm making a sub-linear number of function evaluations can guarantee any constant approximation ratio. Furthermore, when the constraint allows the selection of a constant fraction of the ground set, we show that any algorithm making fewer than Ω(n/log(n)) function evaluations cannot perform better than an algorithm that simply outputs a uniformly random subset of the ground set of the right size. We extend our results to the general case of maximizing a monotone submodular function subject to the intersection of a p-set system and multiple knapsack constraints. Finally, we evaluate the performance of our algorithms on multiple real-life applications, including movie recommendation, location summarization, Twitter text summarization, and video summarization.
Original language | English |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022 |
Editors | S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh |
Publisher | Neural information processing systems foundation |
ISBN (Electronic) | 9781713871088 |
State | Published - 2022 |
Event | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States Duration: 28 Nov 2022 → 9 Dec 2022 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Volume | 35 |
ISSN (Print) | 1049-5258 |
Conference
Conference | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 28/11/22 → 9/12/22 |
Bibliographical note
Publisher Copyright:© 2022 Neural information processing systems foundation. All rights reserved.
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing