Sublinear-time quadratic minimization via spectral decomposition of matrices

Amit Levi, Yuichi Yoshida

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We design a sublinear-time approximation algorithm for quadratic function minimization problems with a better error bound than the previous algorithm by Hayashi and Yoshida (NIPS'16). Our approximation algorithm can be modified to handle the case where the minimization is done over a sphere. The analysis of our algorithms is obtained by combining results from graph limit theory, along with a novel spectral decomposition of matrices. Specifically, we prove that a matrix A can be decomposed into a structured part and a pseudorandom part, where the structured part is a block matrix with a polylogarithmic number of blocks, such that in each block all the entries are the same, and the pseudorandom part has a small spectral norm, achieving better error bound than the existing decomposition theorem of Frieze and Kannan (FOCS'96). As an additional application of the decomposition theorem, we give a sublinear-time approximation algorithm for computing the top singular values of a matrix.

Original languageEnglish
Title of host publicationApproximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 21st International Workshop, APPROX 2018, and 22nd International Workshop, RANDOM 2018
EditorsEric Blais, Jose D. P. Rolim, David Steurer, Klaus Jansen
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Print)9783959770859
DOIs
StatePublished - 1 Aug 2018
Externally publishedYes
Event21st International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2018 and the 22nd International Workshop on Randomization and Computation, RANDOM 2018 - Princeton, United States
Duration: 20 Aug 201822 Aug 2018

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume116
ISSN (Print)1868-8969

Conference

Conference21st International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2018 and the 22nd International Workshop on Randomization and Computation, RANDOM 2018
Country/TerritoryUnited States
CityPrinceton
Period20/08/1822/08/18

Bibliographical note

Publisher Copyright:
© 2018 Aditya Bhaskara and Srivatsan Kumar.

Keywords

  • Approximation Algorithms
  • Graph limits
  • Matrix spectral decomposition
  • Qudratic function minimization

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Sublinear-time quadratic minimization via spectral decomposition of matrices'. Together they form a unique fingerprint.

Cite this