Spectral subgraph detection with corrupt observations

Benjamin A. Miller, Nicholas Arcolano

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recent work on signal detection in graph-based data focuses on classical detection when the signal and noise are both in the form of discrete entities and their relationships. In practice, the relationships of interest may not be directly observable, or may be observed through a noisy mechanism. The effects of imperfect observations add another layer of difficulty to the detection problem, beyond the effects of typical random fluctuations in the background graph. This paper analyzes the impact on detection performance of several error and corruption mechanisms for graph data. In relatively simple scenarios, the change in signal and noise power is analyzed, and this is demonstrated empirically in more complicated models. It is shown that, with enough side information, it is possible to fully recover performance equivalent to working with uncorrupted data using a Bayesian approach, and a simpler cost-optimization approach is shown to provide a substantial benefit as well.

Original languageEnglish
Title of host publication2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3425-3429
Number of pages5
ISBN (Print)9781479928927
DOIs
StatePublished - 2014
Externally publishedYes
Event2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Italy
Duration: 4 May 20149 May 2014

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
Country/TerritoryItaly
CityFlorence
Period4/05/149/05/14

Keywords

  • Graph theory
  • data error and corruption
  • signal detection theory
  • spectral analysis
  • subgraph detection

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Spectral subgraph detection with corrupt observations'. Together they form a unique fingerprint.

Cite this