Sound Field Variability and Mode Coupling in Area of Coastal Wedge in the Ocean

Yanyu Jiang, Qianchu Zhang, Boris Katsnelson

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The report examines the propagation of a sound field from a point source down the slope in the area of the coastal wedge of the ocean in the presence of a sound speed profile (thermocline). It is shown that the presence of the thermocline leads to the appearance of local areas of strong mode coupling and, accordingly, to specific spatial variability of the sound field. The theory and results of modeling the variability of the sound field in a wedge on the basis of the parabolic equation and adiabatic mode theory are presented.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages127-129
Number of pages3
ISBN (Electronic)9780738146720
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2021 - Tel Aviv, Israel
Duration: 1 Nov 20213 Nov 2021

Publication series

Name2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2021

Conference

Conference2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2021
Country/TerritoryIsrael
CityTel Aviv
Period1/11/213/11/21

Bibliographical note

Publisher Copyright:
© 2021 IEEE.

Keywords

  • Coastal wedge
  • Mode coupling
  • Shallow water sound propagation

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Signal Processing
  • Electrical and Electronic Engineering
  • Instrumentation

Fingerprint

Dive into the research topics of 'Sound Field Variability and Mode Coupling in Area of Coastal Wedge in the Ocean'. Together they form a unique fingerprint.

Cite this