Abstract
Tasche [Tasche, D., 1999. Risk contributions and performance measurement. Working paper, Technische Universität München] introduces a capital allocation principle where the capital allocated to each risk unit can be expressed in terms of its contribution to the conditional tail expectation (CTE) of the aggregate risk. Panjer [Panjer, H.H., 2002. Measurement of risk, solvency requirements and allocation of capital within financial conglomerates. Institute of Insurance and Pension Research, University of Waterloo, Research Report 01-15] derives a closed-form expression for this allocation rule in the multivariate normal case. Landsman and Valdez [Landsman, Z., Valdez, E., 2002. Tail conditional expectations for elliptical distributions. North American Actuarial J. 7 (4)] generalize Panjer's result to the class of multivariate elliptical distributions. In this paper we provide an alternative and simpler proof for the CTE-based allocation formula in the elliptical case. Furthermore, we derive accurate and easy computable closed-form approximations for this allocation formula for sums that involve normal and lognormal risks.
Original language | English |
---|---|
Pages (from-to) | 855-863 |
Number of pages | 9 |
Journal | Insurance: Mathematics and Economics |
Volume | 42 |
Issue number | 2 |
DOIs | |
State | Published - Apr 2008 |
ASJC Scopus subject areas
- Statistics and Probability
- Economics and Econometrics
- Statistics, Probability and Uncertainty