Skill-learning by observation-training with patients after traumatic brain injury

Einat Avraham, Yaron Sacher, Rinatia Maaravi-Hesseg, Avi Karni, Ravid Doron

Research output: Contribution to journalArticlepeer-review

Abstract

Traumatic brain injury (TBI) is a major cause of death and disability in Western society, and often results in functional and neuropsychological abnormalities. Memory impairment is one of the most significant cognitive implications after TBI. In the current study we investigated procedural memory acquisition by observational training in TBI patients. It was previously found that while practicing a new motor skill, patients engage in all three phases of skill learning–fast acquisition, between-session consolidation, and long-term retention, though their pattern of learning is atypical compared to healthy participants. A different set of studies showed that training by observing a motor task, generally prompted effective acquisition and consolidation of procedural knowledge in healthy participants. The aim of our study was to (i) evaluate the potential benefit of action observation in TBI patients. (ii) Examine the possibility of general improvement in performance between the first (24 h post-training) and second (2 weeks post-training) stage of the study. (iii) Investigate the link between patients’ ability to benefit from observational learning (via performance gains–speed and accuracy) and common measures of injury (such as severity of injury, functional and cognitive measures). Materials and methods: Patients hospitalized after moderate to severe TBI, were trained by observation for the finger opposition sequence (FOS) motor task. They were then tested for the observation-trained sequence (A) and a similar control sequence (B), at two different time-points (24 h post-training and 2 weeks later). Results revealed: (i) a significant difference in performance between the trained (A) and untrained (B) sequences, in favor of the trained sequence. (ii) An increase in performance for both sequences A and B toward the second (retention) session. (iii) The advantage for sequence A was stable and preserved also in the second session. (iv) Participants with lower moderate Functional Independence Measure (FIM) scores gained more from observational-procedural learning, compared with patients with higher functional abilities. Conclusion: Overall, these findings support the notion that TBI patients may achieve procedural memory consolidation and retention through observational learning. Moreover, different functional traits may predict the outcomes of observational training in different patients. These findings may have significant practical implications in the future, regarding skill acquisition methods in TBI patients.

Original languageEnglish
Article number940075
Pages (from-to)940075
JournalFrontiers in Human Neuroscience
Volume16
DOIs
StatePublished - 31 Aug 2022

Bibliographical note

Copyright © 2022 Avraham, Sacher, Maaravi-Hesseg, Karni and Doron.

Keywords

  • action observation
  • mirror neurons
  • motor performance
  • procedural memory
  • rehabilitation after brain injury
  • skill acquisition
  • traumatic brain injury

ASJC Scopus subject areas

  • Neuropsychology and Physiological Psychology
  • Neurology
  • Psychiatry and Mental health
  • Biological Psychiatry
  • Behavioral Neuroscience

Fingerprint

Dive into the research topics of 'Skill-learning by observation-training with patients after traumatic brain injury'. Together they form a unique fingerprint.

Cite this