Simultaneous Hashing of Multiple Messages

Shay Gueron, Vlad Krasnov

Research output: Contribution to journalArticlepeer-review

Abstract

We describe a method for efficiently hashing multiple messages of different lengths. Such computations occur in various scenarios, and one of them is when an operating system checks the integrity of its components during boot time. These tasks can gain performance by parallelizing the computations and using SIMD architectures. For such scenarios, we compare the performance of a new 4-buffers SHA-256 S-HASH implementation, to that of the standard serial hashing. Our results are measured on the 2nd Generation Intel? CoreTM Processor, and demonstrate SHA-256 processing at effectively ~5.2 Cycles per Byte, when hashing from any of the three cache levels, or from the system memory. This represents speedup by a factor of 3.42x compared to OpenSSL (1.0.1), and by 2.25x compared to the recent and faster n-SMS method. For hashing from a disk, we show an effective rate of ~6.73 Cycles/Byte, which is almost 3 times faster than OpenSSL (1.0.1) under the same conditions. These results indicate that for some usage models, SHA-256 is significantly faster than commonly perceived.
Original languageEnglish
Pages (from-to)319-325
Number of pages7
JournalJournal of Information Security
Volume03
Issue number04
DOIs
StatePublished - 2012

Fingerprint

Dive into the research topics of 'Simultaneous Hashing of Multiple Messages'. Together they form a unique fingerprint.

Cite this