Simulation model of recirculating mariculture with seaweed biofilter: Development and experimental tests of the model

Stephen Ellner, Amir Neori, Michael D. Krom, Kuenhi Tsai, Michael R. Easterling

Research output: Contribution to journalArticlepeer-review

Abstract

A simulation model was developed for an experimental recirculating mariculture system in Elat, Israel. The system cultures gilthead seabream (Sparus aurata), using a seaweed biofilter (Ulva lactuca) to maintain water quality, reduce the flow-through rate of seawater, and reduce the nutrient load in effluents. The model describes the production, transfer, transformations, and losses of inorganic N in the system. In a relatively simple compartment model framework. The model was able to match very closely the experimental data on which it is based. Moreover, the model was able to predict the system's behavior in two additional experiments, which provided independent tests of the model under nonstandard operating conditions (reduced food input and reduced water recirculation rate). The success of the model beyond the range of conditions used in its construction suggests that the model provides a valid mechanistic description of the essential processes affecting inorganic N in the system. Sensitivity analysis of the model indicates that levels of ammonia-N and oxidized N in the system were most strongly affected by the rates of ammonia-N excretion by the fish and ammonia-N uptake by the seaweed, followed by the water inflow and recirculation rates. Sensitivities to internal transformation rate parameters were lower, which might explain the relative seasonal constancy of the system. Simulation experiments indicate that the experimental system could support much higher stocking densities of fish without exceeding tolerable levels of ammonia-N.

Original languageEnglish
Pages (from-to)167-184
Number of pages18
JournalAquaculture
Volume143
Issue number2
DOIs
StatePublished - 30 Jul 1996
Externally publishedYes

Bibliographical note

Funding Information:
This research was supportedb y US-Israel BARD Project I-l 634-89, by the Negev-Arava Fund for Research and Development,a nd by the Israeli Ministries for Energy and Infrastructure, Science and Technology (Grants 3035189 and 3035292). We thank D. Angel for technical assistancew ith experiments and useful discussions, C.E. Boyd for advice, H. Gordin and G. Kissil for encouragement,a nd the editor and anonymous refereesf or their comments on earlier drafts.

Keywords

  • Biofilter
  • Model
  • Recirculating
  • Seaweed
  • Simulation
  • Sparus aurata

ASJC Scopus subject areas

  • Aquatic Science

Fingerprint

Dive into the research topics of 'Simulation model of recirculating mariculture with seaweed biofilter: Development and experimental tests of the model'. Together they form a unique fingerprint.

Cite this