Silica cycling in the ultra-oligotrophic eastern Mediterranean Sea

M. D. Krom, N. Kress, K. Fanning

Research output: Contribution to journalArticlepeer-review

Abstract

Although silica is a key plant nutrient, there have been few studies aimed at understanding the Si cycle in the eastern Mediterranean Sea (EMS). Here we use a combination of new measurements and literature values to explain the silicic acid distribution across the basin and to calculate a silica budget to identify the key controlling processes. The surface water concentration of-1 μM, which is unchanging seasonally across the basin, was due to the inflow of western Mediterranean Sea (WMS) water at the Straits of Sicily. It does not change seasonally because there is only a sparse population of diatoms due to the low nutrient (N and P) supply to the photic zone in the EMS. The concentration of silicic acid in the deep water of the western Ionian Sea (6.3 μM) close to the S Adriatic are an of formation was due to the preformed silicic acid (3 μM) plus biogenic silica (BSi) from the dissolution of diatoms from the winter phytoplankton bloom (3.2 μM). The increase of 4.4μM across the deep water of the EMS was due to silicic acid formed from in situ diagenetic weathering of aluminosilicate minerals fluxing out of the sediment. The major inputs to the EMS are silicic acid and BSi inflowing from the western Mediterranean (121×109 mol Si yr-1 silicic acid and 16×109 mol Si yr-1 BSi), silicic acid fluxing from the sediment (54×109 mol Si yr-1) and riverine (27×109 mol Si yr-1) and subterranean groundwater (9.7×109 mol Si yr-1) inputs, with only a minor direct input from dissolution of dust in the water column (1×109 mol Si yr-1). This budget shows the importance of rapidly dissolving BSi and in situ weathering of aluminosilicate minerals as sources of silica to balance the net export of silicic acid at the Straits of Sicily. Future measurements to improve the accuracy of this preliminary budget have been identified.

Original languageEnglish
Pages (from-to)4211-4223
Number of pages13
JournalBiogeosciences
Volume11
Issue number15
DOIs
StatePublished - 2014

Bibliographical note

Publisher Copyright:
© Author(s) 2014.

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Earth-Surface Processes

Fingerprint

Dive into the research topics of 'Silica cycling in the ultra-oligotrophic eastern Mediterranean Sea'. Together they form a unique fingerprint.

Cite this