Abstract
Microbiota composition has been linked to physical activity, health measures, and biological age, but a shared profile has yet to be shown. The aim of this study was to examine the associations between microbiota composition and measures of function, such as a composite measure of physical capacity, and biological age in midlife, prior to onset of age-related diseases. Seventy healthy midlife individuals (age 44.58 ± 0.18) were examined cross-sectionally, and their gut-microbiota profile was characterized from stool samples using 16SrRNA gene sequencing. Biological age was measured using the Klemera-Doubal method and a composition of blood and physiological biomarkers. Physical capacity was calculated based on sex-standardized functional tests. We demonstrate that the women had significantly richer microbiota, p = 0.025; however, microbiota diversity was not linked with chronological age, biological age, or physical capacity for either women or men. Men had slightly greater β-diversity; however, β-diversity was positively associated with biological age and with physical capacity for women only (p = 0.01 and p = 0.04; respectively). For women, an increase in abundance of Roseburia faecis and Collinsella aerofaciens, as well as genus Ruminococcus and Dorea, was significantly associated with higher biological age and lower physical capacity; an increase in abundance of Akkermansia muciniphila and genera Bacteroides and Alistipes was associated with younger biological age and increased physical capacity. Differentially abundant taxa were also associated with non-communicable diseases. These findings suggest that microbiota composition is a potential mechanism linking physical capacity and health status; personalized probiotics may serve as a new means to support health-promoting interventions in midlife. Investigating additional factors underlying this link may facilitate the development of a more accurate method to estimate the rate of aging.
Original language | English |
---|---|
Pages (from-to) | 1477-1488 |
Number of pages | 12 |
Journal | GeroScience |
Volume | 46 |
Issue number | 2 |
Early online date | 23 Aug 2023 |
DOIs | |
State | Published - Apr 2024 |
Bibliographical note
Publisher Copyright:© 2023, The Author(s), under exclusive licence to American Aging Association.
Keywords
- Biological age
- Exercise
- Microbiome
- Non-communicable disease
ASJC Scopus subject areas
- Aging
- Veterinary (miscellaneous)
- Complementary and alternative medicine
- Geriatrics and Gerontology
- Cardiology and Cardiovascular Medicine