Several Methods of Analysis for Cardinality Constrained Bin Packing

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


We consider a known variant of bin packing called cardinality constrained bin packing, also called bin packing with cardinality constraints (BPCC). In this problem, there is a parameter k≥ 2, and items of rational sizes in [0, 1] are to be packed into bins, such that no bin has more than k items or total size larger than 1. The goal is to minimize the number of bins. A recently introduced concept, called the price of clustering, deals with inputs that are presented in a way that they are split into clusters. Thus, an item has two attributes which are its size and its cluster. The goal is to measure the relation between an optimal solution that cannot combine items of different clusters into bins, and an optimal solution that can combine items of different clusters arbitrarily. Usually the number of clusters may be large, while clusters are relatively small, though not trivially small. Such problems are related to greedy bin packing algorithms, and to batched bin packing, which is similar to the price of clustering, but there is a constant number of large clusters. We analyze the price of clustering for BPCC, including the parametric case with bounded item sizes. We discuss several greedy algorithms for this problem that were not studied in the past, and comment on batched bin packing.

Original languageEnglish
Title of host publicationApproximation and Online Algorithms - 19th International Workshop, WAOA 2021, Revised Selected Papers
EditorsJochen Koenemann, Britta Peis
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages13
ISBN (Print)9783030927011
StatePublished - 2021
Event19th International Workshop on Approximation and Online Algorithms, WAOA 2021 - Virtual, Online
Duration: 6 Sep 202110 Sep 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12982 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference19th International Workshop on Approximation and Online Algorithms, WAOA 2021
CityVirtual, Online

Bibliographical note

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science


Dive into the research topics of 'Several Methods of Analysis for Cardinality Constrained Bin Packing'. Together they form a unique fingerprint.

Cite this