Abstract
During the first meiotic division, crossovers (COs) between homologous chromosomes ensure their correct segregation. COs are produced by homologous recombination (HR)-mediated repair of programmed DNA double strand breaks (DSBs). As more DSBs are induced than COs, mechanisms are required to establish a regulated number of COs and to repair remaining intermediates as non-crossovers (NCOs). We show that the Caenorhabditis elegans RMI1 homolog-1 (RMH-1) functions during meiosis to promote both CO and NCO HR at appropriate chromosomal sites. RMH-1 accumulates at CO sites, dependent on known pro-CO factors, and acts to promote CO designation and enforce the CO outcome of HR-intermediate resolution. RMH-1 also localizes at NCO sites and functions in parallel with SMC-5 to antagonize excess HR-based connections between chromosomes. Moreover, RMH-1 also has a major role in channeling DSBs into an NCO HR outcome near the centers of chromosomes, thereby ensuring that COs form predominantly at off-center positions.
Original language | English |
---|---|
Article number | e1002412 |
Journal | PLoS Biology |
Volume | 14 |
Issue number | 3 |
DOIs | |
State | Published - 24 Mar 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 Jagut et al.
ASJC Scopus subject areas
- General Neuroscience
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences