Abstract
Subterranean blind mole rat, Spalax, has developed strategies to withstand cancer by maintaining genome stability and suppressing the inflammatory response. Spalax cells undergo senescence without the acquisition of senescence-associated secretory phenotype (SASP) in its canonical form, namely, it lacks the main inflammatory mediators. Since senescence can propagate through paracrine factors, we hypothesize that conditioned medium (CM) from senescent Spalax fibroblasts can transmit the senescent phenotype to cancer cells without inducing an inflammatory response, thereby suppressing malignant behavior. To address this issue, we investigated the effect of CMs of Spalax senescent fibroblasts on the proliferation, migration, and secretory profile in MDA-MB-231 and MCF-7 human breast cancer cells. The results suggest that Spalax CM induced senescence in cancer cells, as evidenced by increased senescence-associated beta-galactosidase (SA-β-Gal) activity, growth suppression and overexpression of senescence-related p53/p21 genes. Contemporaneously, Spalax CM suppressed the secretion of the main inflammatory factors in cancer cells and decreased their migration. In contrast, human CM, while causing a slight increase in SA-β-Gal activity in MDA-MB-231 cells, did not decrease proliferation, inflammatory response, and cancer cell migration. Dysregulation of IL-1α under the influence of Spalax CM, especially the decrease in the level of membrane-bound IL1-α, plays an important role in suppressing inflammatory secretion in cancer cells, which in turn leads to inhibition of cancer cell migration. Overcoming of SASP in tumor cells in response to paracrine factors of senescent microenvironment or anti-cancer drugs represents a promising senotherapeutic strategy in cancer treatment.
Original language | English |
---|---|
Article number | 5132 |
Journal | International Journal of Molecular Sciences |
Volume | 24 |
Issue number | 6 |
DOIs | |
State | Published - 7 Mar 2023 |
Bibliographical note
Publisher Copyright:© 2023 by the authors.
Keywords
- Spalax fibroblasts
- breast cancer cells
- interleukin 1 alpha (IL1α)
- nuclear factor κB (NF-κB)
- paracrine senescence
- senescence-associated secretory phenotype (SASP)
ASJC Scopus subject areas
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry