TY - GEN
T1 - Selfish bin packing
AU - Epstein, Leah
AU - Kleiman, Elena
PY - 2008
Y1 - 2008
N2 - Following recent interest in the study of computer science problems in a game theoretic setting, we consider the well known bin packing problem where the items are controlled by selfish agents. Each agent is charged with a cost according to the fraction of the used bin space its item requires. That is, the cost of the bin is split among the agents, proportionally to their sizes. Thus, the selfish agents prefer their items to be packed in a bin that is as full as possible. The social goal is to minimize the number of the bins used. The social cost in this case is therefore the number of bins used in the packing. A pure Nash equilibrium is a packing where no agent can obtain a smaller cost by unilaterally moving his item to a different bin, while other items remain in their original positions. A Strong Nash equilibrium is a packing where there exists no subset of agents, all agents in which can profit from jointly moving their items to different bins. We say that all agents in a subset profit from moving their items to different bins if all of them have a strictly smaller cost as a result of moving, while the other items remain in their positions. We measure the quality of the equilibria using the standard measures PoA and PoS that are defined as the worst case worst/best asymptotic ratio between the social cost of a (pure) Nash equilibrium and the cost of an optimal packing, respectively. We also consider the recently introduced measures SPoA and SPoS, that are defined similarly to the PoA and the PoS, but consider only Strong Nash equilibria. We give nearly tight lower and upper bounds of 1.6416 and 1.6428, respectively, on the PoA of the bin packing game, improving upon previous result by Bilò, and establish the fact that PoS = 1. We show that the bin packing game admits a Strong Nash equilibrium, and that SPoA=SPoS. We prove that this value is equal to the approximation ratio of a natural greedy algorithm for bin packing.
AB - Following recent interest in the study of computer science problems in a game theoretic setting, we consider the well known bin packing problem where the items are controlled by selfish agents. Each agent is charged with a cost according to the fraction of the used bin space its item requires. That is, the cost of the bin is split among the agents, proportionally to their sizes. Thus, the selfish agents prefer their items to be packed in a bin that is as full as possible. The social goal is to minimize the number of the bins used. The social cost in this case is therefore the number of bins used in the packing. A pure Nash equilibrium is a packing where no agent can obtain a smaller cost by unilaterally moving his item to a different bin, while other items remain in their original positions. A Strong Nash equilibrium is a packing where there exists no subset of agents, all agents in which can profit from jointly moving their items to different bins. We say that all agents in a subset profit from moving their items to different bins if all of them have a strictly smaller cost as a result of moving, while the other items remain in their positions. We measure the quality of the equilibria using the standard measures PoA and PoS that are defined as the worst case worst/best asymptotic ratio between the social cost of a (pure) Nash equilibrium and the cost of an optimal packing, respectively. We also consider the recently introduced measures SPoA and SPoS, that are defined similarly to the PoA and the PoS, but consider only Strong Nash equilibria. We give nearly tight lower and upper bounds of 1.6416 and 1.6428, respectively, on the PoA of the bin packing game, improving upon previous result by Bilò, and establish the fact that PoS = 1. We show that the bin packing game admits a Strong Nash equilibrium, and that SPoA=SPoS. We prove that this value is equal to the approximation ratio of a natural greedy algorithm for bin packing.
UR - http://www.scopus.com/inward/record.url?scp=57749190984&partnerID=8YFLogxK
U2 - 10.1007/978-3-540-87744-8_31
DO - 10.1007/978-3-540-87744-8_31
M3 - Conference contribution
AN - SCOPUS:57749190984
SN - 3540877436
SN - 9783540877431
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 368
EP - 380
BT - Algorithms - ESA 2008 - 16th Annual European Symposium, Proceedings
PB - Springer Verlag
T2 - 16th Annual European Symposium on Algorithms, ESA 2008
Y2 - 15 September 2008 through 17 September 2008
ER -