Abstract
Robust recovery of lost colors in underwater images remains a challenging problem. We recently showed that this was partly due to the prevalent use of an atmospheric image formation model for underwater images. We proposed a physically accurate model that explicitly showed: 1)~the attenuation coefficient of the signal is not uniform across the scene but depends on object range and reflectance, 2)~the coefficient governing the increase in backscatter with distance differs from the signal attenuation coefficient. Here, we present a method that recovers color with the revised model using RGBD images. The emph{Sea-thru} method first calculates backscatter using the darkest pixels in the image and their known range information. Then, it uses an estimate of the spatially varying illuminant to obtain the range-dependent attenuation coefficient. Using more than 1,100 images from two optically different water bodies, which we make available, we show that our method outperforms those using the atmospheric model. Consistent removal of water will open up large underwater datasets to powerful computer vision and machine learning algorithms, creating exciting opportunities for the future of underwater exploration and conservation.
Original language | English |
---|---|
Title of host publication | Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 |
Publisher | IEEE Computer Society |
Pages | 1682-1691 |
Number of pages | 10 |
ISBN (Electronic) | 9781728132938 |
DOIs | |
State | Published - Jun 2019 |
Event | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States Duration: 16 Jun 2019 → 20 Jun 2019 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2019-June |
ISSN (Print) | 1063-6919 |
Conference
Conference | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 |
---|---|
Country/Territory | United States |
City | Long Beach |
Period | 16/06/19 → 20/06/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
Keywords
- Computational Photography
- Low-level Vision
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition