Scorpion speciation in the Holy Land: Multilocus phylogeography corroborates diagnostic differences in morphology and burrowing behavior among Scorpio subspecies and justifies recognition as phylogenetic, ecological and biological species

Stav Talal, Itay Tesler, Jaim Sivan, Rachel Ben-Shlomo, H. Muhammad Tahir, Lorenzo Prendini, Sagi Snir, Eran Gefen

Research output: Contribution to journalArticlepeer-review

Abstract

Scorpio Linnaeus, 1758 (family Scorpionidae Latreille, 1802) was considered monotypic for over a century, and comprised a single species, Scorpio maurus Linnaeus, 1758, with 19 subspecies, distributed from West Africa, throughout the Maghreb and the Middle East, to Iran. Two parapatric subspecies, Scorpio maurus fuscus (Ehrenberg, 1829) and Scorpio maurus palmatus (Ehrenberg, 1828), have long been recognized in the eastern Mediterranean region. We examined morphological variation, burrow architecture and genetic divergence among 39 populations across the distribution of the two subspecies to assess whether they are conspecific and, if not, how many species might be involved. Cuticle coloration, pedipalp chela digital carina condition, and selected measurements were recorded. Sixty burrows were excavated and examined for burrow structure and depth. A multilocus dataset comprising concatenated fragments of one nuclear (28S rDNA) and three mitochondrial (12S rDNA, 16S rDNA, Cytochrome c Oxidase Subunit I) loci, totaling ca. 2400 base-pairs, was produced for 41 individuals, and a single-locus dataset comprising 658 base-pairs of the COI locus for 156 individuals. Despite overlapping ranges in morphometric characters of pedipalp chela shape, the putative subspecies were easily distinguished by cuticle coloration and condition of the pedipalp chela digital carina, and were also found to differ significantly in burrow architecture and depth. Phylogeographical analyses of the COI and multilocus datasets recovered seven distinct clades. Separate analyses of mitochondrial sequences, and combined analyses of mitochondrial and nuclear sequences support most clades. The two major clades corresponded with the geographical distributions of S. m. fuscus and S. m. palmatus in the region. Specimens from these clades were genetically distinct, and exhibited different burrow structure in geographically-proximate localities, suggesting reproductive isolation. The palmatus clade included two distinct subclades of specimens from localities adjacent to the Dead Sea. Three other clades, comprising specimens from the most northeastern localities, were tentatively assigned to subspecies previously recorded in neighboring Jordan and Syria. The morphological, behavioral and genetic evidence supports previous suggestions that Scorpio maurus is a species complex and justifies the following taxonomic emendations: Scorpio fuscus (Ehrenberg, 1829), stat. nov.; Scorpio kruglovi Birula, 1910, stat. nov.; Scorpio palmatus (Ehrenberg, 1828), stat. nov.; Scorpio propinquus (Simon, 1872), stat. nov.

Original languageEnglish
Pages (from-to)226-237
Number of pages12
JournalMolecular Phylogenetics and Evolution
Volume91
DOIs
StatePublished - 1 Oct 2015

Bibliographical note

Publisher Copyright:
© 2015 Elsevier Inc..

Keywords

  • Chelicerata
  • Scorpio maurus
  • Scorpiones
  • Scorpionidae
  • Systematics
  • Taxonomy

ASJC Scopus subject areas

  • Genetics
  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Scorpion speciation in the Holy Land: Multilocus phylogeography corroborates diagnostic differences in morphology and burrowing behavior among Scorpio subspecies and justifies recognition as phylogenetic, ecological and biological species'. Together they form a unique fingerprint.

Cite this