Abstract
Hot-wire cutting is a subtractive fabrication technique used to carve foam and similar materials. Conventional machines rely on straight wires and are thus limited to creating piecewise ruled surfaces. In this work, we propose a method that exploits a dual-arm robot setup to actively control the shape of a flexible, heated rod as it cuts through the material. While this setting offers great freedom of shape, using it effectively requires concurrent reasoning about three tightly coupled sub-problems: 1) modeling the way in which the shape of the rod and the surface it sweeps are governed by the robot's motions; 2) approximating a target shape through a sequence of surfaces swept by the equilibrium shape of an elastic rod; and 3) generating collision-free motion trajectories that lead the robot to create desired sweeps with the deformable tool. We present a computational framework for robotic hot wire cutting that addresses all three sub-problems in a unified manner. We evaluate our approach on a set of simulated results and physical artefacts generated with our robotic fabrication system.
Original language | English |
---|---|
Pages (from-to) | 98:1-98:15 |
Journal | ACM Transactions on Graphics |
Volume | 39 |
Issue number | 4 |
DOIs | |
State | Published - 8 Jul 2020 |
Bibliographical note
Funding Information:This work was supported in part by the Swiss National Science Foundation through the National Centre of Competence in Digital Fabrication (NCCR dfab).
Publisher Copyright:
© 2020 ACM.
Keywords
- computer graphics
- fabrication
- robotics
- sensitivity analysis
ASJC Scopus subject areas
- Computer Graphics and Computer-Aided Design