Abstract
Background: Posttraumatic stress disorder (PTSD) is twice as prevalent among females as compared to males following potentially traumatic events. While there is evidence for aberrant functional connectivity between hubs of the central executive network (CEN), salience network (SN), and the default mode network (DMN) in PTSD, little is known regarding sex-specificity of this connectivity. The current study aims to directly examine sex-specific resting-state functional connectivity (rs-FC) in trauma exposed males and females, with and without PTSD. Methods: One hundred and seventy-eight individuals underwent functional magnetic resonance imaging (fMRI) at rest, of them 85 females (45 with PTSD) and 93 males (57 with PTSD). We conducted whole-brain seed-based analysis using CEN (lateral prefrontal cortex [lPFC]), SN (anterior cingulate cortex [ACC], insula, amygdala [AMG]), and DMN (medial prefrontal cortex [mPFC], posterior parietal cortex [PCC], and hippocampus [HIP]) hubs as seed regions. Group-by-Sex ANOVA was conducted. Results: The amygdala-precuneus, ACC-precuneus, and hippocampus-precuneus pathways exhibited significant group-by-sex interaction effects, with females with PTSD consistently differing in connectivity patterns from males with PTSD and from trauma-exposed healthy females. Conclusions: Sex-specific neural connectivity patterns were found within and between key nodes of the CEN, DMN, and the SN, suggesting opposite patterns of connectivity in PTSD and trauma-exposed controls as a function of sex as a biological variable (SABV). This may point to mechanistic sex differences in adaptation following trauma and may inform differential neural targets for treatment of females and males with PTSD.
Original language | English |
---|---|
Article number | 100389 |
Journal | Neurobiology of Stress |
Volume | 15 |
DOIs | |
State | Published - Nov 2021 |
Bibliographical note
Publisher Copyright:© 2021 The Authors
Keywords
- Gender
- Mechanism
- Neurobiology
- Pathophysiology
- SABV
- Trauma
ASJC Scopus subject areas
- Biochemistry
- Physiology
- Molecular Biology
- Endocrinology
- Endocrine and Autonomic Systems
- Cellular and Molecular Neuroscience