Abstract
Marine heatwaves have caused massive mortality in coastal benthic ecosystems, altering community composition. Here, we aim to understand the effects of single and sequential sublethal heatwaves in a temperate benthic ecosystem, investigating their disturbance on various levels of ecological hierarchy, i.e. individual physiology, trophic groups' biomass and ecosystem carbon fluxes. To do so, we performed a near-natural experiment using outdoor benthic mesocosms along spring/summer, where communities were exposed to different thermal regimes: without heatwaves (0HW), with one heatwave (1HW) and with three heatwaves (3HWs). Gastropods were negatively impacted by one single heatwave treatment, but the exposure to three sequential heatwaves caused no response, indicating ecological stress memory. The magnitude of ecosystem carbon fluxes mostly decreased after 1HW, with a marked negative impact on mesograzers' feeding, while the overall intensity of carbon fluxes increased after 3HWs. Consumers' acclimation after the exposure to sequential heatwaves increased grazing activity, representing a threat for the macroalgae biomass. The evaluation of physiological responses and ecological interactions is crucial to interpret variations in community composition and to detect early signs of stress. Our results reveal the spread of heatwave effects along the ecological hierarchical levels, helping to predict the trajectories of ecosystem development. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Original language | English |
---|---|
Article number | 20230171 |
Journal | Philosophical Transactions of the Royal Society B: Biological Sciences |
Volume | 379 |
Issue number | 1909 |
DOIs | |
State | Published - 22 Jul 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2024 The Author(s) Published by the Royal Society. All rights reserved.
Keywords
- Baltic Sea
- carbon fluxes
- ecological stress memory
- mesograzers
- ocean warming
- trophic networks
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology
- General Agricultural and Biological Sciences