Regularized Submodular Maximization at Scale

Ehsan Kazemi, Shervin Minaee, Moran Feldman, Amin Karbasi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, we propose scalable methods for maximizing a regularized submodular function f, expressed as the difference between a monotone submodular function g and a modular function ℓ. Submodularity is related to the notions of diversity, coverage, and representativeness. In particular, finding the mode (most likely configuration) of many popular probabilistic models of diversity, such as determinantal point processes and strongly log-concave distributions, involves maximization of (regularized) submodular functions. Since a regularized function can potentially take on negative values, the classic theory of submodular maximization, which heavily relies on a non-negativity assumption, is not applicable. We avoid this issue by developing the first one-pass streaming algorithm for maximizing a regularized submodular function subject to a cardinality constraint. Furthermore, we give the first distributed algorithm that (roughly) reproduces the guarantees of state-of-the-art centralized algorithms for the problem using only O(1/ε) rounds of MapReduce. We highlight that our result, even for the unregularized case where the modular term ℓ is zero, improves over the memory and communication complexity of the state-of-the-art by a factor of O(1/ε). We also empirically study the performance of our scalable methods on real-life applications, including finding the mode of negatively correlated distributions, vertex cover of social networks, and several data summarization tasks.

Original languageEnglish
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages5356-5366
Number of pages11
ISBN (Electronic)9781713845065
StatePublished - 2021
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: 18 Jul 202124 Jul 2021

Publication series

NameProceedings of Machine Learning Research
Volume139
ISSN (Electronic)2640-3498

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period18/07/2124/07/21

Bibliographical note

Publisher Copyright:
Copyright © 2021 by the author(s)

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Regularized Submodular Maximization at Scale'. Together they form a unique fingerprint.

Cite this