Reciprocal hosts’ responses to powdery mildew isolates originating from domesticated wheats and their wild progenitor

Roi Ben-David, Amos Dinoor, Zvi Peleg, Tzion Fahima

Research output: Contribution to journalArticlepeer-review

Abstract

The biotroph wheat powdery mildew, Blumeria graminis (DC.) E.O. Speer, f. sp. tritici Em. Marchal (Bgt), has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes (Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum, and T. aestivum) and 241 accessions of its direct progenitor, wild emmer wheat (T. turgidumssp. dicoccoides)]. A set of eight Bgt isolates, originally collected fromdomesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant). Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasmand high susceptibility of the wild material (their original host). Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [P(F) < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance). By testing the association between disease severity and geographical distance from the source of inoculum, we have found higher susceptibility in wild emmer close to the source. Both qualitative and quantitative assays showed a reciprocal resistance pattern in the wheat host and are well aligned with the recent findings of significant differentiation into wild-emmer and domesticated-wheat populations in the pathogen.

Original languageEnglish
Article number75
JournalFrontiers in Plant Science
Volume9
DOIs
StatePublished - 23 Feb 2018

Bibliographical note

Funding Information:
We dedicate this work to the late Dr. N. Eshed who contributed greatly to research on wheat powdery mildew in Israel. The authors thank A. Fahoum and Y. Gadri for skillful assistance in the experiments and to M. Gurevitch, A. Fadida-Myers, and K. Chandrasekhar for proof reading of the text. We thank the National Small Grains Collection (NSGC) of the USA, the Institute of Plant Genetics and Crop Plant Research (IPK) Genebank, Gatersleben, Germany, and Prof. F. Salamini, of the Max-Plank Institute, Köln, Germany, for providing some of the germplasmused in this study.

Publisher Copyright:
© 2018 Ben-David, Dinoor, Peleg and Fahima.

Keywords

  • Blumeria graminis tritici (Bgt)
  • Powdery mildew
  • Resistance
  • Wheat domestication
  • Wild emmer wheat

ASJC Scopus subject areas

  • Plant Science

Fingerprint

Dive into the research topics of 'Reciprocal hosts’ responses to powdery mildew isolates originating from domesticated wheats and their wild progenitor'. Together they form a unique fingerprint.

Cite this