Re-identification of Aeromonas isolates from chironomid egg masses as the potential pathogenic bacteria Aeromonas aquariorum

Maria José Figueras, Roxana Beaz-Hidalgo, Yigal Senderovich, Sivan Laviad, Malka Halpern

Research output: Contribution to journalArticlepeer-review

Abstract

Egg masses of the non-biting midge Chironomous sp. have recently been found to serve as a reservoir for Vibrio cholerae and Aeromonas species. These insects are widely distributed in freshwater and evidence suggests that they may disseminate pathogenic bacteria species into drinking water systems. In the current study the taxonomy of 26 Aeromonas isolates, previously recovered from chironomid egg masses, was re-evaluated. It was found that 23 isolates, which had previously been identified as Aeromonas caviae, could belong to the recently described species Aeromonas aquariorum by their biochemical traits. To date, A. aquariorum has been found in ornamental fish and also in human extra-intestinal infections. ERIC-PCR genotyping differentiated 11 strains within the 23 A. aquariorum isolates, whose identity was confirmed by their rpoD gene sequences. Strains were found to possess the following virulence-associated genes: alt (90.9%), ahpB (81.8%), pla/lip/lipH3/apl-1/lip (54.5%), fla (27.3%), act/hylA/aerA (27.3%), ascF-ascG (81.8%) and aexT (9%) encoding for the cytotonic heat-labile enterotoxin, elastase, lipase, flagella, cytotoxic enterotoxins, the Type III Secretion System and the AexT toxin delivered by this system respectively. These findings indicate that chironomid egg masses harbour strains of A. aquariorum, which bear an important number of virulence genes, and that this species was misidentified originally as A. caviae.

Original languageEnglish
Pages (from-to)239-244
Number of pages6
JournalEnvironmental Microbiology Reports
Volume3
Issue number2
DOIs
StatePublished - Apr 2011

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Agricultural and Biological Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Re-identification of Aeromonas isolates from chironomid egg masses as the potential pathogenic bacteria Aeromonas aquariorum'. Together they form a unique fingerprint.

Cite this