Abstract
The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distributions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggesting a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allowing Lessepsian migration into the Mediterranean Sea. Our method is applicable to any larval community and could assist coral reef conservation and fishery management efforts.
Original language | English |
---|---|
Pages (from-to) | 306-316 |
Number of pages | 11 |
Journal | Nature Ecology and Evolution |
Volume | 2 |
Issue number | 2 |
DOIs | |
State | Published - 1 Feb 2018 |
Externally published | Yes |
Bibliographical note
Funding Information:We thank M. McGrouther from the Australian Museum, P. L. Munday from James Cook University, J. Herler from the University of Vienna and P. Borsa from Universitas Udayana for providing tissue samples for this study, the staff of the Inter-University Institute for Marine Sciences in Eilat, Israel, and the Marine Science Station of The University of Jordan and Yarmouk University for their help in conducting the research. This study was supported by the United States–Israel Binational Science Foundation (BSF grant 2008/144 to M.K. and C.B.P.), the Israeli Ministry of the Environment (grant 111-51-6 to M.K. and R.H.), the Angel Faivovich Foundation (to R.S.) and by the Nancy & Stephen Grand Israel National Center for Personalized Medicine. Field sampling was supported in part by the World Bank, as part of the Red Sea–Dead Sea Water Conveyance Study Program.
Publisher Copyright:
© 2017 The Author(s).
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Ecology