Skip to main navigation
Skip to search
Skip to main content
University of Haifa Home
Update your profile
Home
Researchers
Research units
Research output
Search by expertise, name or affiliation
Pseudo-hermitian random matrix models: General formalism
Joshua Feinberg
, Roman Riser
Department of Physics
Research output
:
Contribution to journal
›
Article
›
peer-review
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'Pseudo-hermitian random matrix models: General formalism'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Keyphrases
Eigenvalues
100%
Hermitian Random Matrix
100%
Pseudo-Hermitian
100%
Random Matrix Model
100%
General Formalism
100%
Pseudo-Hermitian Matrix
66%
Real Eigenvalues
66%
Complex Eigenvalues
66%
Resolvent
66%
Two Dimensional
33%
Numerical Analysis
33%
Truncation
33%
Gain Loss
33%
Numerical Results
33%
PT-symmetry
33%
Hermitian
33%
Random Matrix Theory
33%
Indefinite Metric
33%
Diagrammatic Methods
33%
Complex Conjugate Pair
33%
Real Axis
33%
Noncompact
33%
Positive Eigenvalues
33%
Negative Eigenvalues
33%
Lie Algebra
33%
Krein Space
33%
Large Matrices
33%
Non-uniform Density
33%
Finite-dimensional
33%
Matrix Size
33%
PT-symmetric Quantum Mechanics
33%
Simple Sets
33%
Finite Segment
33%
Pseudo-Hermitian Operator
33%
Blob
33%
Induced Metric
33%
Mathematics
Eigenvalue
100%
Hermitian Matrix
100%
Random Matrix
100%
Real Eigenvalue
66%
Resolvent
66%
Complex Eigenvalue
66%
Numerical Analysis
33%
Asymptotics
33%
Truncation
33%
Matrix (Mathematics)
33%
Closed Form
33%
Random Matrix Theory
33%
Complex Conjugate
33%
Real Axis
33%
Negative Eigenvalue
33%
Positive Eigenvalue
33%
Hermitian Operator
33%
Krein Space
33%
Finite Segment
33%
Lie Algebra
33%
Finite Dimensional Subspace
33%
Nonuniform
33%
PT Symmetry
33%
Quantum System
33%