Proving as fast as computing: succinct arguments with constant prover overhead

Noga Ron-Zewi, Ron D. Rothblum

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Succinct arguments are proof systems that allow a powerful, but untrusted, prover to convince a weak verifier that an input x belongs to a language L NP, with communication that is much shorter than the NP witness. Such arguments, which grew out of the theory literature, are now drawing immense interest also in practice, where a key bottleneck that has arisen is the high computational cost of proving correctness. In this work we address this problem by constructing succinct arguments for general computations, expressed as Boolean circuits (of bounded fan-in), with a strictly linear size prover. The soundness error of the protocol is an arbitrarily small constant. Prior to this work, succinct arguments were known with a quasi-linear size prover for general Boolean circuits or with linear-size only for arithmetic circuits, defined over large finite fields. In more detail, for every Boolean circuit C=C(x,w), we construct an O(log|C|)-round argument-system in which the prover can be implemented by a size O(|C|) Boolean circuit (given as input both the instance x and the witness w), with arbitrarily small constant soundness error and using poly(λ,log|C|) communication, where λ denotes the security parameter. The verifier can be implemented by a size O(|x|) + poly(λ, log|C|) circuit following a size O(|C|) private pre-processing step, or, alternatively, by using a purely public-coin protocol (with no pre-processing) with a size O(|C|) verifier. The protocol can be made zero-knowledge using standard techniques (and with similar parameters). The soundness of our protocol is computational and relies on the existence of collision resistant hash functions that can be computed by linear-size circuits, such as those proposed by Applebaum et al. (ITCS, 2017). At the heart of our construction is a new information-theoretic interactive oracle proof (IOP), an interactive analog of a PCP, for circuit satisfiability, with constant prover overhead. The improved efficiency of our IOP is obtained by bypassing a barrier faced by prior IOP constructions, which needed to (either explicitly or implicitly) encode the entire computation using a multiplication code.

Original languageEnglish
Title of host publicationSTOC 2022 - Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
EditorsStefano Leonardi, Anupam Gupta
PublisherAssociation for Computing Machinery
Pages1353-1363
Number of pages11
ISBN (Electronic)9781450392648
DOIs
StatePublished - 6 Sep 2022
Event54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022 - Rome, Italy
Duration: 20 Jun 202224 Jun 2022

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022
Country/TerritoryItaly
CityRome
Period20/06/2224/06/22

Bibliographical note

Publisher Copyright:
© 2022 ACM.

Keywords

  • IOP
  • Interactive Oracle Proofs
  • Succinct Arguments

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Proving as fast as computing: succinct arguments with constant prover overhead'. Together they form a unique fingerprint.

Cite this