Provably Approximated Point Cloud Registration

Ibrahim Jubran, Alaa Maalouf, Ron Kimmel, Dan Feldman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The goal of the \emph{alignment problem} is to align a (given) point cloud $P = \{p_1,\cdots,p_n\}$ to another (observed) point cloud $Q = \{q_1,\cdots,q_n\}$. That is, to compute a rotation matrix $R \in \mathbb{R}^{3 \times 3}$ and a translation vector $t \in \mathbb{R}^{3}$ that minimize the sum of paired distances $\sum_{i=1}^n D(Rp_i-t,q_i)$ for some distance function $D$. A harder version is the \emph{registration problem}, where the correspondence is unknown, and the minimum is also over all possible correspondence functions from $P$ to $Q$. Heuristics such as the Iterative Closest Point (ICP) algorithm and its variants were suggested for these problems, but none yield a provable non-trivial approximation for the global optimum. We prove that there \emph{always} exists a "witness" set of $3$ pairs in $P \times Q$ that, via novel alignment algorithm, defines a constant factor approximation (in the worst case) to this global optimum. We then provide algorithms that recover this witness set and yield the first provable constant factor approximation for the: (i) alignment problem in $O(n)$ expected time, and (ii) registration problem in polynomial time. Such small witness sets exist for many variants including points in $d$-dimensional space, outlier-resistant cost functions, and different correspondence types. Extensive experimental results on real and synthetic datasets show that our approximation constants are, in practice, close to $1$, and up to x$10$ times smaller than state-of-the-art algorithms.
Original languageEnglish
Title of host publicationProceedings of the IEEE/CVF International Conference on Computer Vision (ICCV’21)
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages13269-13278
Number of pages10
ISBN (Electronic)9781665428125
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Bibliographical note

Publisher Copyright:
© 2021 IEEE

Keywords

  • cs.CV
  • cs.CG

Fingerprint

Dive into the research topics of 'Provably Approximated Point Cloud Registration'. Together they form a unique fingerprint.

Cite this