Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis

Arnaud Millet, Katherine R. Martin, Francis Bonnefoy, Philippe Saas, Julie Mocek, Manal Alkan, Benjamin Terrier, Anja Kerstein, Nicola Tamassia, Senthil Kumaran Satyanarayanan, Amiram Ariel, Jean Antoine Ribeil, Loïc Guillevin, Marco A. Cassatella, Antje Mueller, Nathalie Thieblemont, Peter Lamprecht, Luc Mouthon, Sylvain Perruche, Véronique Witko-Sarsat

Research output: Contribution to journalArticlepeer-review

Abstract

Granulomatosis with polyangiitis (GPA) is a systemic necrotizing vasculitis that is associated with granulomatous inflammation and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) directed against proteinase 3 (PR3). We previously determined that PR3 on the surface of apoptotic neutrophils interferes with induction of antiinflammatory mechanisms following phagocytosis of these cells by macrophages. Here, we demonstrate that enzymatically active membrane-associated PR3 on apoptotic cells triggered secretion of inflammatory cytokines, including granulocyte CSF (G-CSF) and chemokines. This response required the IL-1R1/MyD88 signaling pathway and was dependent on the synthesis of NO, as macrophages from animals lacking these pathways did not exhibit a PR3-associated proinflammatory response. The PR3-induced microenvironment facilitated recruitment of inflammatory cells, such as macrophages, plasmacytoid DCs (pDCs), and neutrophils, which were observed in close proximity within granulomatous lesions in the lungs of GPA patients. In different murine models of apoptotic cell injection, the PR3-induced microenvironment instructed pDC-driven Th9/Th2 cell generation. Concomitant injection of anti-PR3 ANCAs with PR3-expressing apoptotic cells induced a Th17 response, revealing a GPA-specific mechanism of immune polarization. Accordingly, circulating CD4+ T cells from GPA patients had a skewed distribution of Th9/Th2/Th17. These results reveal that PR3 disrupts immune silencing associated with clearance of apoptotic neutrophils and provide insight into how PR3 and PR3-targeting ANCAs promote GPA pathophysiology.

Original languageEnglish
Pages (from-to)4107-4121
Number of pages15
JournalJournal of Clinical Investigation
Volume125
Issue number11
DOIs
StatePublished - 2 Nov 2015

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis'. Together they form a unique fingerprint.

Cite this